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Lyapunov spectrum from time series using moving boxes
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We present a very fast algorith(few secondgfor estimating full Lyapunov spectrum from time series. The
method requires a smaller number of parameters than other time-average algorithms, and is tested for data with
different numerical precision, sampling frequencies, total sampling times, and presence of noise. We report
conclusive results for the electron density broadband fluctuations of a plasma at the edge of tokamak TBR-1.
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[. INTRODUCTION attractor. The invariant measure is approximated on the basis
of the deterministic system that is taken as a random dynami-
Invariant properties of dynamical systems, such as fractatal system governed by a finite-state Markov chain. In order
dimensions, Lyapunov exponents and topological charactete define\; of the Markov chain, a random matrix is asso-
istics, have been very useful for the characterization of chaeiated with each state. The obtained invariant density assigns
otic time series associated with experimental ddt2]. In  a weight to each portion of the piecewise linear map. The
recent years, many methods for computing Lyapunov expotriangularization method of Delaun¢$7] is used to provide
nents\; have been proposd8-—10]. A brief description and an approximation of the true system. On each simplex the
comparison of these methods can be found in the literaturgnap is approximately linear, and exponents are spatially av-

[1,2,11,12. eraged by weighting areas of high density more heavily than
The most traditional methods use time-average apareas of low density.
proaches[7—10] as follows. Consider the pointg(j), j The available methods to estimate require huge com-

=1,2,...n, collected from some continuous orbit in a Puter processing times and a subtle adjustment of param-
phase spac®?, using a sampling frequenay 1. Now, we  ©ters. The met_hod proposgd_in this paper adapts phase space-
extract a subsequence by taking evaiyth point, T,eZ  average technlques_, permitting an easier and faster estimate
andT,, is the evolution lag £,,=T,,A is the evolution timg of \; frqm an _e.xperlmentlal time series. Although the phase
Then, we suppose that this set of points is an application of §Pace is partitioned as in the space-average methods, our

. T . = >, algorithm is still a time-average method, since the Lyapunov
map producing the poini(j + Tpy) as a function oF(x(})). spectrum is calculated from E(B). The present algorithm is

The evolution of a small difference(j + Tm) =X(j"+Tm) {0 \, estimation what Crutchfield and McNamara’s altas
from the orbit is given by method[18] is to local prediction techniques.

- -, S -, In this paper the algorithm is described in Sec. Il. The
X(J+Tin) =X+ Te) = DFE(DIX(+Tin) =X+ Tin) 1, procedure for its application is given in Sec. Ill. Compari-
1) sons with traditional time-average methods are presented in

Sec. IV, where we also report numerical tests concerning the
sensitivity of the algorithm to the variation of the parameters
and characteristics of the analyzed data. Furthermore, the
algorithm is applied to experimental data of edge electron
density broadband fluctuations in the TBR-1 tokamak, and
the results are compared with those provided by usual time-
average methods. Finally, conclusions are given in Sec. V.
The algorithm of moving boxes, a procedure for the division
of the phase space, is explained in detail in the Appendix.

Wherele(j) is adXxd Jacobian matrix. The product of;
Jacobian matrices in time is given by

Jp =DF(ny)---DF(j)---DF(2Tp+1)
XDF(Ty+1)DF(1). 2

Here,ny=n/T,,. According to the Oseledec multiplicative
ergodic theoreni13], if the probability distribution function

of the mapF is invariant,\; can be calculated from the Il. THE ALGORITHM

eigenvalues of the matrix Assume the time seriefx;} given by integers;=Xx(to

A= lim (Jﬁ J )y 3) +jA), j=1,...n, corresponding to a total sampling time
T t=nA. The reason for using integers is that the computation
is faster than with the real format. Moreover, the definition of
Methods that use Ed3) have been called time-average al- boxes and subspaces edges are much more precise using in-
gorithms. tegers. Also, outputs of analog-to-digital converters, which
On the other hand, attempts to estimateusing spatial usually measure the data in nonlinear experiments, are binary
averages were made by Kim and HEl4] and Boyarsky numbers converted into integers.
[15]. More recently, Froylanet al. [16] proposed a method Takens’ time delay reconstruction methjd®] is applied
using the probability density function associated with theto the time series, such that

N—®
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Terminal nodes

FIG. 1. Binary tree for a two-dimensional attractor. The smallest boxes’ valie=/"ma/4. In this case, the depth of the tree is defined
by /7 andi, i=0,1,2.

= (X X a1y -+ Xjt(a-1T,), (4  points (t|me_ averagg we can also represent it as a set (_)f
boxes(spatial average since we suppose that the signal is
ergodic. A particular boxBg of the attractor{fj} will be

where Ty is the reconstruction lagrf=TyA is the recon- localized by the tablesr(g?j). 77(5,—) is an array with length

struction timg, andd is the embedding dimension. h h el ¢ih locali he Boxi
An important step in our method is an efficient procedure’™ WNere each element of the array localizes the Boxgiv-

for defining neighborhoods over the attractor. Neighborhood$1g @ point¢; of the time seriesBs=m(¢;). On the other
are a set of boxes or hypercutBs, s=1, ... N, with size hand, we can find a set of points of bBy, usingm~*(Bs).

/ min€Z, covering the attractofFig. 1). Boxes are disjoint, 7 '(Bs) is an index with lengttN, where each element is a
and the whole attractor is represented Ky where X  table with thenp(Bs) points that belongs to this boR;.

=UB,. Although the attractor is usually defined as a set ofHere, 7~ 1(By) ={§j € Bg}. The algorithm for the division of
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the phase space in boxes and the construction(df) and  SinceX=UBg, np(X) gives how many times all boxes are
7w~ 1(Bg), which is called moving boxes, is presented in thevisited. The probability density functioR(Bs) can be also
Appendix. While the traditional methodg,9,10 find neigh-  estimated a®(B;) =np(Bs)/np(X).

boring points using searching routines, the proposed method Since there are boxes with,<d-+1, we may not esti-

does not require a searching procedure, since neighboringate all Jacobian matricd3F(j) over the whole attractor.
points are given byr~*(B,). In the previous methods, the consequently, the sum in E€) hasny<n/T,, elements. On
neighborhood is a hypercircle or cube centered in a point ofhe gther handne(X) is also the number of used Jacobian
the orbit of the attractor. In our algorithm, the neighbors aremjarices, because each bB is visited np(Bs) times. So,

a group of points defined by the b&¢. These indexes have nr=np(X). Moreover, there arap(B,) visited elements in
the same role as and 7~ * of the method of Eckmanet al. 7 1(By). Thus, the sumEl ;S; _ 15, hasnp(X) ele-
= jEﬂ' B

[9],_ but they have a dlfferen_t meaning. In our case! may ments, and Eq. (9 can be rewrtten as \,
indicate more than one point , while for Eckmannet al. [ 1no(X) 7N 3 g Inri(j). When we introduce the
1 points just for one. We use a computer technique called " .P( )Tm] 2512 e 1))

“dynamic storage allocation” for building W(Ej) and Visitation numbernp(Bg) of box By, the Lyapunov expo-

7 (By) [20]. nents are given by

In order to increase the performance of the computer N
code, the Jacobian matrices associated with the Byoare N=2, P(BON;, \(Bg= e > Inri(j),
approximated by a unique matriXF(B), s=1 Np(Bs) 7 §eBs

(10

DF(j)~DF(B,), ¢£ eBs. 5 — :
) (Bs). £<Bs ® where\;(Bs) measures the local divergency of the attractor

Now we can rewrite the noncommutative product in E2).  inside the boxBs.

as In order to estimate;;(j) in Eq. (10), we need to calcu-
L ) late the Jacobian matricd3F (B,). Consider a sefé} of
Jn =T DF(By), & eBs. (6)  points belonging to the boB.,
In contrast with Eq(3), wheren;— o, in this last equation {2(D)}=1§—(&):§ By}, (11)

ny is finite because the analyzed désgy} is finite. _
Another problem faced by using a naive method for esti-where(¢;) is the average position of the points insiBg,
mating Lyapunov exponents is the overflow when matricesand z(j) is the distance betweﬁ] and(éj). After an evo-

are multiplied in Eq(6) [22]. This is avoided introducing the lution laaT ... all points into the boB. from £ to { &,
triangularization g m P S ) ofgr,)
and the point(§;) evolves to(¢;.1 ). Therefore, the set

DF(By)Qj-1,=Q;R;, §eBs, (7 {z(j)} can be mapped into

whereQ; and Qi—Tm are orthogonal matrices, arR} is an {f(j +Tm)}:{§j+Tm_<§j+Tm>:§j e By}. (12
upper triangular matrix. Although Eckmann and Ru¢Ré€]
suggest the Householder reorthogonalization process at thethe hypercube is small enough’ i</ mad the spatial
Jacobian triangularization due to its precision for the eigeneyolution from{z(j)} to {z(j + T,,)} will be mapped by
value estimation[23], we prefer the algorithm of Gram-
Schmidt, since it is four times faster than Househo|@&. z(j+T,)~DF(Bg)z(j). (13
So,
We do not take higher-order terms in the Taylor expansion as
Jn,=QnPn Pn=Rn--Ror 1Ry +iRi. (8 in the algorithm of Brownet al. [10] because they do not
provide better results. The matriialf(Bs) in Eq. (13 is

The product of triangular matriceg; is an upper triangular . . -
matrix P,_, whose elements of the main diagonal are theesnmated using the least squares memzﬂ- If DF(B)

T o is nondegenerated, Eq13) has a solution fom,=d+1.
product of theR; main diagonal elements. Then, we can

. + 1o , Despite many criteria fon, in the literature[7-10], the
rewrite Eq. (3) as A=(P, P, )", and the associated gystematic application of our algorithm reveals that the val-

Lyapunov exponents are ues ofn, do not affect significantly the performance of the
. computer code. As a consequence, we take afjoints into
\ = 1 S Inr()) 9 Bsfor estimatingDF (By).
Y npr s The algorithm for the phase space division is based on the
k-d tree algorithm proposed by Friedman, Bently, and Finkel
wherer;;(j) are diagonal elements of the mati;). [26], where the attractor is divided into boxes with different

Now, we introducenp(Bg), which gives how many times sizeg27,28. The method of Browt al. searches neighbor-
the boxBs is visited by the orbit of the attractor as well as ing points by making use of this algorithm. It is a recursive
the number of Jacobian matrices with the same Bgx  algorithm, and the data structure is a binary {r2@|, where
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each node is associated with one box or one particular region
of the reconstructed phase space. We adapt the algorithm of
Friedmanet al. to cover the attractor with hypercubes of the

same length and replace their searching procedure(tfy) <&
and 7~ 1(By) (see the Appendix The root of the tree is a
single hypercube with siz€ ,,,,=2" covering the whole at- 0.0 g -
tractor (n, is the number of bits defining integers of the time
serieg. Starting from the root, every box splits into a pair of
boxes of the next generation. When there is free space, boxes
might move into the reconstructed phase space after each FIG. 2. Lyapunov spectra for the Lorenz flux wifk=45.92,
division minimizing the number of boxes covering the attrac-o=16.0, b=4.0, A=0.03, n=64 000, 7,=0.09, 7,=0.30, andL
tor. If there are not points in a particular box, the empty box= 13 468. The graphs showy varying (a) the total sampling time,
and the associated branch of the binary tree are eliminated=tA~*; (b) the box size” ,;,; (c) the evolution timer,; and(d)
Fig. 1. This algorithm can be used for other analyses wherée reconstruction timey. The dashed lines indicate the expected
an attractor is covered by a set of boxes. For example, in thealues. The arrow i) indicates the best box siz€,,,=609, used
case of multifractal analysis, it significantly diminishes theto estimate\; in (b) and(c). Dotted lines show the expected values.
errors[21]. Finally, the boxes of the last generation with size The gray rectangles indicate the flat regions of spectra where values
/ in list all points ¢ inside of Bs. were used to estimate the in Table I.

Along general lines, the structure of the algorithm can be
summarized as follows(i) Takens’s reconstruction from the More elaborated procedure than takg=74=7., and
time series(ii) covering of the attractor using moving boxes; 7 min// ma~0.01. If these values are taken, we will have il-
(iii ) construction of the index tables(j) and =~ (s); (iv) Iqsory small errors. On the other hand, when graphs varying
estimation of Jacobian matrices through the least squaresmin: Tm. and 7y are constructed, plateaus can be identified
method, with subsequent triangularization using the GramfOr non-negative exponents. These stable regions are more
Schmidt reorthogonalization; andv) estimation of the pronounced for larger exponents. If the signal is strongly

05 . s o PO
100 1000 0.0 0.1 0.2 0.0 0.1 0.2
1. (@rb. units) T (arb. units) 1, (arb. units)

Lyapunov spectrum from Ed10). cpntami_nated by noise or ot_her perturbation, these flat re-
gions disappear, and the estimate of Lyapunov exponents is
impossible.

Il ADJUSTMENT OF THE PARAMETERS We recommend adjusting the size of the hoy;, first.
A first estimate of the adjustable parametets;,, T, Our numerical tests show that the best;, corresponds to

and 74 is straightforward. The sizé& ,, of the boxes should the smallest plateau value in thex /i, graph. In case such

be 1% of the lengti. of the attractor8,9], defined as the @ stable region does not exist, the most suitabjg, is the

standard deviation of the mean associated with the sign&ine that minimizes the largest Lyapunov exponeqt Ac-

{x;}. The timesr,, and 74 should be taken of order of the cording to Albancet al.[29] and our numerical tests, a suit-

autocorrelation timer,, the time lag such that the linear able embedding window for is the first minimum of the

autocorrelation function is half of its maximum value. An- autocorrelation functionr,. We adopt this prescription for

other suitable choice for Takens’ reconstruction time is wherthe\; X 7, graph, too, because we always find the plateaus in

the autocorrelation function first crosses z¢Ppl12,29, in this interval of time. However, the best choice g, , 7,

spite of other more elaborated prescriptid@—32. The and 74 together are the values which maximize these pla-

embedding dimension for the reconstruction shoulddbe teaus. The value and the error for are obtained taking the

>2d,, whered, is the dimension of the attractor. Neverthe- mean and the standard deviation of the mean of the plateau

less, this dimensiod is not always necessafg] to provide  values.

an Euclidean space where the set of points can be unfolded By way of illustration, take the Lorenz floy85]

without ambiguity. Other criteria, like false nearest neighbors o

[33], may be used. Anyway, the largest positive Lyapunov (x,y,2)=0(y—X),—xz+Rx—y,xy—bz, (19

exponent does not change using higher embedding dimen-

sions, despite the presence of spurious expongh?.  with R=45.92,0=16.0, ando=4.0. Parameters of the time

Concerning the numbaer of points in the time series, there series areA =0.03, n=64 000, 7.=0.09, 7,=0.30, andL

are some prescriptions in the literatyi®-10,34. However, =13468. Figure 2 shows a typical graph set for the

we would prefer to apply the simplest of them: the totalLyapunov spectrum analysis. Expected values for the

sampling time should be such that the non-negative expdtyapunov exponents according to the literature are repre-

nents of the spectrum at thg Xt graph converge. It is an sented by dashed lines. We usg,;,=609, Fig. Za), to ob-

important remark that frequently the negative exponents dtain Figs. Zb) and Zc). In these figuresr,,, and 4 are varied

not exhibit convergence. But, according to the Osedelearound the autocorrelation time=0.09. Figure &) is ob-

theorem[13], the convergence is expected only for non-tained usingry=0.09 and Fig. &) makes use of,,=0.09.

negative exponents. Moreover, the negative exponent is ust®™ateaus are identified in 0.83,<0.15 and 0.0& 74

ally far from the expected value, reflecting the usual difficult<0.12, indicated in gray in Figs.(8) and Zc). Average

to estimate numerically; along contracting directions. values and standard deviations of this spectrum are in
Nevertheless, Lyapunov exponents usually demand &able I.

036702-4



LYAPUNOV SPECTRUM FROM TIME SERIES USING . ..

PHYSICAL REVIEW &5 036702

TABLE I. Lyapunov exponents spectra using methods of \Wblél. (WSSV), Sano-SawadéssS), Eckmannet al. (ERKC), Brown et al.
(BBA), and moving boxes.

Expected value WSSV SS ERKC BBA Moving boxes
xj+1=1—2xj2 In2=0.693...2 0.99+0.01 0.69190.0016 0.6890.007 0.694 0.008 0.698& 0.005
Henon 0.4185:-0.0005 0.5790.004 0.404:0.009 0.4180.006 0.426:0.002 0.426:0.002
a=1.4p=0.3 —1.6225+0.000% —1.57+0.02 —1.48+0.04 —1.61+0.02 —1.63+0.08
Lorenz 1.37#0.01 2.25-0.12 1.32£0.05 1.5G:0.08 1.45-0.04 1.470.09
R=40.000=16.0 —0.011+0.005 —0.02-0.07 0.0G:0.13 0.06:£0.05 —0.11+0.05
b=4A=0.03 —22.359+0.006 —13.9+3.7 —-17.3+7.1 —14.6-9.8 —14.7+2.7
Lorenz 1.50%0.003 2.0:0.1 1.42+0.06 1.66-0.08 1.53-0.02 1.60-0.09
R=45.920=16.0 —0.001+0.001 —0.01=0.12 0.0x0.18 0.0x0.03 —0.04=0.09
b=4A=0.03 —22.499+0.002 —14.7+45 —19.9+6.3 —19.1+84 —14.6+25
Rossler 0.064% 0.0009 0.103:0.007 0.06% 0.004 0.06%0.002 0.069%0.004 0.0690.005
a=b=0.2c=5.7, —0.0003=0.0004 0.005:0.006 0.00%0.005 0.00x0.004 0.00%0.008
A=0.12 —4.982+0.00% —1.09+0.44 —-1.2£0.8 —2.360.04 —-1.9£0.9
Mackey-Glass 0.00740.0007 0.0120.002 0.00%0.002 0.00540.0007 0.006:0.002 0.00%0.001
a=0.2pb=0.1, 0.003& 0.0007 0.002%0.0010 0.001€0.0012 0.00%0.002 0.0038 0.0008
¢c=10,T=30, —0.0015-0.0008 —0.003£0.001 —0.00110.0014 —0.004:£0.002 —0.004t0.001
A=0.3 —0.017+0.003 —0.014£0.002 —0.020+0.004 —0.017+0.003 —0.016+0.003

—0.048+0.00F —0.049£0.007 —0.039£0.008 —0.042+-0.004 —0.044+-0.008
#Exact value.
bSemianalytical methof22].
‘Referencd8].

IV. RESULTS IN MAPS, FLUX, AND
EXPERIMENTAL DATA

the Lorenz flux with R=45.92, ¢=16.0, b=4.0, n
=64 000,A=0.03, and 14 bits has been used simulating an
experimental data.

Figures 3a)—3(c) give values for\; while the total sam-
pling timet is varied. When we vary parameters in search of
plateaus, our algorithm converges slowly. We need for the
Lorenz flow a number of points of the order of 10 000 for the
convergence ok, and\,. This value should be confronted
with those obtained by Karantonis and PagitEhg|, who
compared performances of algorithms of Sano-Sawada and
Eckmannet al. using the Lorenz flux and keeping all param-
eters constant, except the number of data points. Their results
indicate a minimum of the order of 10000 points for both
+s){1+[x(t+s)]°D—bx(t), with a=0.2, b=0.1, ¢  methods using fixed parameters. Besides, when averages on
=10.0,s=30, n=64000,A=0.3, and 16 bits. Differential the flat regions of the spectrum is used, the quickness and the
equations have been integrated using the fourth order Rungeeise robustness of our algorithm pay for the slow conver-
Kutta's method 25]. One particular variable has been taken,gence as we will show along this section.
and the attractor has been reconstructed using Takens' time Effects of noise can be seen in FigédBand 3f). We call
delay reconstruction method. For time-average methods weoise pseudorandom numbégg!] introduced during the nu-
also consider other parameters not present in our algorithnmerical integration of the flow. We define the level of noise
like the numbemy of Jacobian matricegt0]. as the ratio of the standard deviation of the mean of noise by

Results with our method in Table | agree with those ob-the typical length of the attractdr. The largest Lyapunov
tained using the algorithms of Sano-Sawd@ and Eck-  exponent using our algorithm is very robust, supporting until
mannet al.[9]. However, its performance is slightly inferior 10% of noise. In spite of the large error, the second
to the method of Browret al. [10]. The algorithm of Wolf  Lyapunov exponenk, becomes more negative as the level
et al.[7] has many limitations for an efficient estimate of the of noise is increased. The same type of behavior has been
largest Lyapunov exponent. observed applying the algorithm of Brovet al. to the Lo-

We also evaluate the sensitivity of our algorithm concern+enz flow with noisd2]. In a previous work40], we com-
ing characteristics of the time series: the number of points ipared some traditional time-average algorithms and con-
the data set, the level of noise, the numerical precision andluded the method of Eckmanet al. is the most noise
the sampling frequency. Figure 3 shows results obtainedobust, followed by the algorithm of Browet al. and Sano-
varying r,,, and 4 and averaging over the plateaus values forSawada. While the algorithm of Eckmaenal. supports up

We compare our method with some well-known algo-
rithms [7-10] and use the following maps and flows§)
quadratic map(36], X;,1=1—2x", with n=1024 and 14
bits of numerical precision(ii) Henon map[37] (Xj41=1
—ax’+y;.yj+1=bx) with a=1.4,b=0.3,n=10000, and
12 hits; (i) Lorenz flux[35], Eq. (14), usingR=45.92 or
R=40.00, 0=16.0, b=4.0, n=64000, A=0.03, and 14
bits; (iv) Rossler flux [38] [x=—-y—z,y=x+ay,z=b
+2z(x—c)] takinga=b=0.2, c=5.7, n=40000,A=0.12,
and 14 bits; and(v) Mackey-Glass flux[39], x= (ax(t
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FIG. 4. CPU times for estimating the Lyapunov spectra associ-
ated with the Lorenz flux varying the number of pointsThe used
parameters arey= 7,,=0.09,d=3, andn,=3, as well asO, the
proposed algorithm andl, the Sano-Sawada’s method.

ul 1

10.'1 TR 0.'1 10 100 %3 10 10.0' ods use the Gram-Schr_nidt procedure as the triangularization
noise (%) noise (%) noise (%) process, and both estimate the Jacobian through the least
squares method. Although Sano and Sawada do not suggest

(@) A, any algorithm to search neighbor points, we have imple-
——— mented the quicksort algorithf24] as in the work of Eck-
3l 3 mannet al.[9]. According to our experiendel0], the meth-
ods of Eckmanret al,, Bryant et al. and Wolf et al. need
> b ] about two, three, and five times more than the CPU time of
Sano-Sawada, respectively. We run the computer codes, writ-
'%‘M' ten in language C, into workstations SUN SPARCstation 5.
T 10 12 As can be seen in Fig. 4, our method is between 10 and 100
bits times faster than the algorithm of Sano-Sawada, depending
on the number of points, with a much less pronounced rate of
(i) A, growing. Finally, we also tested the method in a notebook

Compag Presario 1200-XL111, and our algorithm takes only
1.45 sec to estimatk; .

The good performance of the proposed algorithm can be
understood. In effect, we have implemented many routines
optimizing the data processing. Our procedure does not need

. 3 search routines, since we use indexesand ! to find
110-2 10" o 10" '3%-2 10" neighborhoods. Furthermore, we approach all Jacobian ma-
A (arb. units) A (arb. units) A (arb. units) trices associated with a bd by a unique average Jacobian
matrix, Eq.(5), thus reducing the number of estimated Jaco-

FIG. 3.} varying the total sampling time(a)—(c), the level of i3 matrices. This economy can be exemplified when our
noise (d)—(f), the numerical precisiorig)—(i), and the sampling method is applied to the Lorenz flux witR=45.92, o

frequency(j)—() for the Lorenz flux withR=45.92, 0=16.0, b _ _ _ _ ;
=4.0, A=0.03, and 14 bits\; were estimated taking averages of 1_63(,) gin(‘:‘ég, énlg.og,tr?e rg:ta?)g, O?rgcl?nqaen\;?lgluigelgg
- T m» .

A : T
the gray area in Fig. 2. Dashed lines show the expected values. T . ! .
number of points in the time seriesris=tA L. ibéleS Jacobian matrices. On the other hand,_our algorithm
computes exponents from 21 213 points covering 949 boxes

to 5% of noise, the method of Sano and Sawada gives ba@nd using 804 Jacobian matrices. The number of Poxes is
results for signals with more than 1% of noise. bigger than the number of Jacobian matrices bec@Usés
The numerical precision of the data is varied in Figs.estimated only from those matrices which do not have de-
3(g)—3(i). Our algorithm needs data with at least 10 bits ofgeneracy, Eq(13). The method of Sano-Sawada needs an
precision, a similar performance compared with the methoaven smaller number of Jacobian matrices, since it is fixed in
of Eckmannet al. and superior to the algorithms of Brown 1000 before processing. However, the performance of our
et al. and Sano-Sawada, which need 12 bit6,42. algorithm is faster than the method of Sano and Sawada
We also analyze the effects of the sampling frequencypecause it is more efficient to search neighbor points. When
A~ As can be seen in Figs(j3-3(1), 0.03<A<0.06 is the we compare to the time-average methods, the number of
best range for the estimates, which is consistent with an adines at the computer code has been also optimized in our
equate sampling of the signal. algorithm through the dynamic storage allocation, the recur-
We choose the method of Sano-Sawada to compare ttgve function, and the binary tree.
performance of the proposed algorithm because both meth- Finally, we applied the algorithm to experimental data
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250 T

250 T
FIG. 5. Set of four analyzed signals

150 | | =15000, t=3.00 ms, 7,=5.00us for DZ1045;
n=12000, t=3.75 ms, 7.=5.25 us for

JA1001; n=11600, t=2.90 ms, 7.=6.50 us

JA1052 (arb. units) DZ1045 (arb. units)
[4)]
o

DZ1049 (arb. units) JA1001 (arb. units)

oeo 228 ' for JA1052; andn=12000, t=3.00 ms, 7,
' ' =0.50 us for DZ1049. The signals have been

sampling at frequency 4 MHzA=0.25 us.
150 WA o USRSV 150 g Each signal is proportional to density broadband
r fluctuations at the edge of the tokamak TBR-1.
50 . 50 . i i i-
00 250 00 250 The Iength of the signal is represented by arbi

trary units.
t (us) t (us)

from TBR-1. TBR-1 is a small circular cross-section toka-algorithm is consistent with its noise robustness. Since noise
mak with a minor radius of 0.11 m and a major radius of 0.30usually increases the largest Lyapunov exponent, values us-
m, operating with Ohmically-heated plasma with the fol-ing other methods should be overestimated.

lowing typical parameters: toroidal magnetic fielB

=4-4.5 kG, plasma current-410 kA, electron density V. CONCLUSIONS

(2-10)x 10'2 cm3, and electron temperature on axis 100 ) o
eV. The data consist of local fluctuating signals of the ion Ve have proposed and tested an algorithm for estimating

saturation current in the triple Langmuir probes placed in thdn® Lyapunov exponents from time series. Compared to the
scape-off layer of the tokamak TBRf#1]. The signals are traditional time-average methods, the proposed algorithm is
proportional to density broadband fluctuations at the edge di@Ster, more noise robust and uses a smaller number of pa-
the plasma. The associated frequency spectra are wide, cof@Meters, simplifying substantially its utilization and giving
ering the range 10-500 kHz. The set of four signals we hav&eSults comparable to those obtained using the best algo-
analyzed in Fig. 5 represents typical data chosen among t{§hms. In order to optimize the phase space division into
experimental results available. boxes, we constructed a recursive algorithm, where boxes
We have estimated for the largest Lyapunov exponent§10Ve adapting to the geometry of the attractor. This proce-

associated with three of the four signals using our algorithnflur® permits a better and more efficient estimate of the prob-
as well as the methods of Sano-Sawada, Ecknedra, and  ability density function and the Jacobian matrices inside each

Brown et al. The Lyapunov exponent analysis for the signalP0x- We also tested estimating Lyapunov exponents from
DZ1049 is not conclusive due to the presence of strong Sig(_experlmental signals of density broadband fluc_tuatlons at_the
natures of nois¢40,42, corroborated by the nonsaturation €dge of the plasma of the tokamak TBR-1, with conclusive
of the correlation dimension using the algorithm of Grass-€sults for the largest exponent.
berger and Procacc{@3].
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There is a significant spread in the values for the Iarges& g ) PP
Lyapunov exponents obtained for each signal using different ]
algorithms. The smallest; we obtain using the proposed APPENDIX: THE ALGORITHM OF MOVING BOXES

The binary tree in our algorithm is built using a recursive

DZ1045 JA1001 JA1052 procedure we call axes_divide. The input variables are asso-
g-g ° g B g 5 - g 8 g i 98 ~ TABLE II. The largest Lyapunov exponent; in 10 s 1 for
o1k Sogid_Opgdio_o ] signals DZ1045, JA1001, and JA1052. The exponents were ob-
<~ o2 23 $ E § 383 g § _ tained using the algorithms of Sano-Sawd8&), Eckmannet al.
-0.3 § } 3 § § kS % § E (ERKC), Brown et al. (BBA), and moving boxes.
-0.4 £ E3 |
S 5 8 & 5 51 8 845861285456 Method DZ1045 JA1001 JA1052
d d d ss 019005 019005  0.110.02
FIG. 6. Lyapunov spectra; in 10° s™! using our method for ERKC 0.20-0.05 0.18-0.04 0.07-0.03
signals DZ1045, JA1001, and JA1052 as a function of the embedBBA 0.15+0.04 0.21-0.06 0.16:-0.03
ding dimensiord. The values used to estimate the largest Lyapunowloving boxes 0.16:0.03 0.1+ 0.04 0.16:0.03

exponents are in gray.
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ciated with the nodes of the binary tree, and these variables () |f /=, . i=d and {éj}l_;e@ or {éj}Rgﬁ@, {SJ}L
control the recursive nature of axes_divide. The descriptio%md{gj}R will be joined in a list with terminal nodes of the

of this variable is given by¢;}, which represents the whole pinary tree, and the function goes back to the caller. This list
reconstructed attractor or a part of it; the vecporpe Z¢  of terminal nodes is given byr *(B,). Each element of

represents the center of the baxandb are the inferior and 7 *(Bs) is a terminal node and also a table with the posi-
superior limits of the reconstructed phase sp@tehe root  tions of each element of the s€i5}, and{¢;}r., 7 (By)

or a subsefat thenth generationof it, respectively, and they :{Ej}L and Tfl(BSﬂ):{é?j}R_ On the other hand, the ele-

are always redefined along the recursive application o z zZ : .
axes_divide. Furthermore, there are the variables controllin%;)n’]entS Ofiglh aqd{gl}R W_'” p9|nt Ehe box B, tbrOUQh the
dex m(§): m(§)=Bs with & < {&} and m(§)=Bs. 1,

the depth of the binary tree: the scafae Z, which gives the TASI - L
side of the box, and, 0<i=<d, a variable that indicates the Where¢;e{&;}r. Finally, if {§;}, and{¢;} are not terminal
beginning of the attractor divisiori €0) or the axis which hodes, the input variables of axes_divide for each node or
will be divided (i#0). We needd generation to divide a branch will be defined as follows &it) and(iii ), and we will
hypercube in 8 boxes, and the tree will havé{1)d gen-  split each se{éj}L and{¢;}r again calling axes_divide.
erations from the root to terminal nodes. (i) Define the left branch. This branch is associated with
The root of the binary tree is one hypercube with sizethe left box. The obvious choice for the center of the left box

/ max=2" centered at the middle of the attractpr=u+(v  PiL along the a?<isi is the first quarter of the main box, i.e.,
—Wy2, whereﬁ=min{§j} and5=ma>{§j}. We compute alli piL=p;— /14, since a box centered here always covers the

4o b s d taki he minimal and imal left side of the attractor. However, sometimes there is free
andov by scanning ¢;} and taking the minimal and maximal g5 6 in the phase space. The free space is verified taking the
values in the most simple way. The limits of the phase spac

values following distances:

a andb, are simply the numerical precision of the computer, _ )

or else these limits are those values sufficient to cover the d=pi—v;, d'=v,—a—7//2, (A2)
whole attractor. We takie=0 to indicate the beginning of the

hypercube division. The input variables of axes_divide Wherev;_ is the maximum value of the left side of the at-

- - - e i i
which are associated with the root of the tree, {d@¢, p, a, U actor along axis. Whend' is smaller thand”, we can
movep;, tov; —//4 dispersing the left box. Now the center

b, 7 max, andi. .
The recursive function axes_divide can be described agf the left box s
follows: . v —/14, d=di
(@ If {&=T or /=7 win, Nothing will happen, and the PiL= p—/14,  di>di, (A3)

procedure axes_divide will return to the calling routine or

caller. The conditional expressidd}=( is a test for the The main advantage of this movement is the eventual elimi-
branch elimination. All empty boxes are eliminated usingnation of extra boxes in posterior applications of the proce-
this test. Furthermore, this item has a second function: whedure axes_divide, since the left side of the left box might be
the terminal node is the root, we do not need to build theempty. When the left branch is created, the phase space is
tree, and this situation is identified through the teSt also divided in two, so the new limit of the left side of the
=/ min- phase space is

(b) If i=d and/ # / i,, takei=0 and call axes_divide )
making use of§}, p, a, b, //2 andi as input variables. Q-4 B = by, k#i
After this, the procedure is finished. When the division of the L L Pr, k=i.
box with side/ along itsd Cartesian axes is finished, we . L
will check in this item, if the box is divided again ifdarts  After that, we call axes_divide using;} . P, ag, by, 7,

(A4)

or not using the conditional expression=d)/\ (/" # / min)- andi as input variables.
(c) Incrementi, i =i+ 1, identifying the axis which will (iii) The procedure for the right branch is the same as the
be divided. left. So,
(d) Divide the hypercube into two boxes with the same i . )
size using a bisector plane in thexis. Then, we have d"=uir—p;i—1, d’=b—ur-/12, (A5)
sz ur+//4—1, dii<d?®
(& ={& & =X+ -, <Pi}s PiR= o+ /1, g, (AB)
{éj}R:{gj =X -1, > Pik (A1) E b a a,, k#i .
RTD: BR™\ 0 g k=i, (A7)

whereé;; andp; are, respectively, the componeitsf vec-
tors§; andp. These equations define the left and right nodegvhere Uig is the minimum value of the right side of the

of the binary tree. If£}, or {£}r is empty, the branch of attractor along axis We call axes_divide again usig;}
the empty set will be eliminated using itefa). Pr, ar, br, 7, andi as input variables. The term1 atp;g
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(a) (b) (c)

FIG. 7. (a) A two-dimensional
---------- attractor covered by a single box.
Dashed lines indicate the square
/-\ division in the box with size/2.
(b) The movement of the box
¥ along they axis. (c) The elimina-
tion of the unnecessary box.

'{y

X

in Egs. (A5) and (A6), as well as+1 atag in Eq. (A7) is  case, the box is moved to this direction. On the other hand,
related with the representation of variables as integer nunthe box moves to the bottom of the attractor. Using this
bers. movement an empty side opens into the box. This empty side
axes_divide also performs a second movement in the pewill be eliminated with the future application of axes_divide.
pendicular semiplane of the Cartesian axis, see Fig. 7. When There is one last problem with the sidé€sof the boxes,
the attractor is divided gp; along the axig, sometimes the which are always given by*2 k<n, . axes_divide always
best choice for the division of the next axis is nopat;. So,  splits boxes into two parts with the same length, anhchust
we might reduce a bit more the number of bokessing the  have the same computer representation of the phase space.
following procedure. So,/ is an integer & because the division of must result
(@) If the lengths of the subse{g?j},_ and{éj}R are larger in another integer. On the other hand, Lyapunov exponents
than //2 in the axisk, i<k=d, i.e., if the length of the are very sensitive to the definition of neighborhdd@,42,
subsets is too large for the second movement, nothing willimiting the proposed algorithm, since we need boxes with
happen and the procedure will be finished. sizes different from £ We avoid the problem by changing
(b) In caseb,—v,=<7/2, we will definep,=v,—//2. In  proportionally the data instead of the box size. So, we renor-
another cas@=u,+//2—1. We check through the condi- malize the time series by  writing {X;}new
tional expressiotb,—uv,=<//2 if there is free space for the ={x;/2°% mnMdl — Now, the new /., values
box movement at the top of the attractor. In the aff|rmat|ve2'”teger('°9 “min) for axes_divide.
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