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Lyapunov spectrum from time series using moving boxes
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~Received 29 August 2001; published 11 February 2002!

We present a very fast algorithm~few seconds! for estimating full Lyapunov spectrum from time series. The
method requires a smaller number of parameters than other time-average algorithms, and is tested for data with
different numerical precision, sampling frequencies, total sampling times, and presence of noise. We report
conclusive results for the electron density broadband fluctuations of a plasma at the edge of tokamak TBR-1.
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I. INTRODUCTION

Invariant properties of dynamical systems, such as fra
dimensions, Lyapunov exponents and topological charac
istics, have been very useful for the characterization of c
otic time series associated with experimental data@1,2#. In
recent years, many methods for computing Lyapunov ex
nentsl i have been proposed@3–10#. A brief description and
comparison of these methods can be found in the litera
@1,2,11,12#.

The most traditional methods use time-average
proaches@7–10# as follows. Consider the pointsxW ( j ), j
51,2, . . . ,n, collected from some continuous orbit in
phase spaceRd, using a sampling frequencyD21. Now, we
extract a subsequence by taking everyTmth point, TmPZ
andTm is the evolution lag (tm5TmD is the evolution time!.
Then, we suppose that this set of points is an application
map producing the pointxW ( j 1Tm) as a function ofFW „xW ( j )….
The evolution of a small differencexW ( j 1Tm)2xW ( j 81Tm)
from the orbit is given by

xW~ j 1Tm!2xW~ j 81Tm!5DFW ~ j !@xW~ j 1Tm!2xW~ j 81Tm!#,

~1!

whereDFW ( j ) is a d3d Jacobian matrix. The product ofnT
Jacobian matrices in time is given by

JnT
5DFW ~nT!•••DFW ~ j !•••DFW ~2Tm11!

3DFW ~Tm11!DFW ~1!. ~2!

Here, nT5n/Tm . According to the Oseledec multiplicativ
ergodic theorem@13#, if the probability distribution function
of the mapFW is invariant, l i can be calculated from th
eigenvalues of the matrix

L5 lim
nT→`

~JnT

† JnT
!1/2nT. ~3!

Methods that use Eq.~3! have been called time-average a
gorithms.

On the other hand, attempts to estimatel i using spatial
averages were made by Kim and Hsu@14# and Boyarsky
@15#. More recently, Froylandet al. @16# proposed a method
using the probability density function associated with t
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attractor. The invariant measure is approximated on the b
of the deterministic system that is taken as a random dyna
cal system governed by a finite-state Markov chain. In or
to definel i of the Markov chain, a random matrix is ass
ciated with each state. The obtained invariant density ass
a weight to each portion of the piecewise linear map. T
triangularization method of Delauncy@17# is used to provide
an approximation of the true system. On each simplex
map is approximately linear, and exponents are spatially
eraged by weighting areas of high density more heavily th
areas of low density.

The available methods to estimatel i require huge com-
puter processing times and a subtle adjustment of par
eters. The method proposed in this paper adapts phase s
average techniques, permitting an easier and faster esti
of l i from an experimental time series. Although the pha
space is partitioned as in the space-average methods
algorithm is still a time-average method, since the Lyapun
spectrum is calculated from Eq.~3!. The present algorithm is
to l i estimation what Crutchfield and McNamara’s alt
method@18# is to local prediction techniques.

In this paper the algorithm is described in Sec. II. T
procedure for its application is given in Sec. III. Compa
sons with traditional time-average methods are presente
Sec. IV, where we also report numerical tests concerning
sensitivity of the algorithm to the variation of the paramete
and characteristics of the analyzed data. Furthermore,
algorithm is applied to experimental data of edge elect
density broadband fluctuations in the TBR-1 tokamak, a
the results are compared with those provided by usual ti
average methods. Finally, conclusions are given in Sec
The algorithm of moving boxes, a procedure for the divisi
of the phase space, is explained in detail in the Appendi

II. THE ALGORITHM

Assume the time series$xj% given by integersxj5x(t0
1 j D), j 51, . . . ,n, corresponding to a total sampling tim
t5nD. The reason for using integers is that the computat
is faster than with the real format. Moreover, the definition
boxes and subspaces edges are much more precise usin
tegers. Also, outputs of analog-to-digital converters, wh
usually measure the data in nonlinear experiments, are bi
numbers converted into integers.

Takens’ time delay reconstruction method@19# is applied
to the time series, such that
©2002 The American Physical Society02-1
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FIG. 1. Binary tree for a two-dimensional attractor. The smallest boxes’ valuel min5l max/4. In this case, the depth of the tree is defin
by l and i, i 50,1,2.
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jW j5~xj ,xj 1Td
, . . . ,xj 1(d21)Td

!, ~4!

where Td is the reconstruction lag (td5TdD is the recon-
struction time!, andd is the embedding dimension.

An important step in our method is an efficient procedu
for defining neighborhoods over the attractor. Neighborho
are a set of boxes or hypercubesBs , s51, . . . ,N, with size
l minPZ, covering the attractor~Fig. 1!. Boxes are disjoint,
and the whole attractor is represented byX, where X
5øsBs . Although the attractor is usually defined as a set
03670
e
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points ~time average!, we can also represent it as a set
boxes~spatial average!, since we suppose that the signal

ergodic. A particular boxBs of the attractor$jW j% will be

localized by the tablesp(jW j ). p(jW j ) is an array with length
n, where each element of the array localizes the boxBs giv-
ing a point jW j of the time series,Bs5p(jW j ). On the other
hand, we can find a set of points of boxBs , usingp21(Bs).
p21(Bs) is an index with lengthN, where each element is
table with thenP(Bs) points that belongs to this boxBs .
Here,p21(Bs)5$jW jPBs%. The algorithm for the division of
2-2



he

th
ri
e
t o
ar
e

lle

te

st
ce

t t
en
-

th

an
d

s

e

.

n

tor

t

as
t

al-
e

the
kel
nt
-
ve

LYAPUNOV SPECTRUM FROM TIME SERIES USING . . . PHYSICAL REVIEW E65 036702
the phase space in boxes and the construction ofp(j j ) and
p21(Bs), which is called moving boxes, is presented in t
Appendix. While the traditional methods@7,9,10# find neigh-
boring points using searching routines, the proposed me
does not require a searching procedure, since neighbo
points are given byp21(Bs). In the previous methods, th
neighborhood is a hypercircle or cube centered in a poin
the orbit of the attractor. In our algorithm, the neighbors
a group of points defined by the boxBs . These indexes hav
the same role asp andp21 of the method of Eckmannet al.
@9#, but they have a different meaning. In our casep21 may
indicate more than one pointxj , while for Eckmannet al.
p21 points just for one. We use a computer technique ca
‘‘dynamic storage allocation’’ for buildingp(jW j ) and
p21(Bs) @20#.

In order to increase the performance of the compu
code, the Jacobian matrices associated with the boxBs are
approximated by a unique matrixDFW (Bs),

DFW ~ j !'DFW ~Bs!, jW jPBs . ~5!

Now we can rewrite the noncommutative product in Eq.~2!
as

JnT
5P j 51

nT DFW ~Bs!, jW jPBs . ~6!

In contrast with Eq.~3!, wherenT→`, in this last equation
nT is finite because the analyzed data$xj% is finite.

Another problem faced by using a naive method for e
mating Lyapunov exponents is the overflow when matri
are multiplied in Eq.~6! @22#. This is avoided introducing the
triangularization

DFW ~Bs!Qj 2Tm
5QjRj , jW jPBs , ~7!

whereQj and Qj 2Tm
are orthogonal matrices, andRj is an

upper triangular matrix. Although Eckmann and Ruelle@22#
suggest the Householder reorthogonalization process a
Jacobian triangularization due to its precision for the eig
value estimation@23#, we prefer the algorithm of Gram
Schmidt, since it is four times faster than Householder@23#.
So,

JnT
5QnT

PnT
, PnT

5RnT
•••R2Tm11RTm11R1 . ~8!

The product of triangular matricesRj is an upper triangular
matrix PnT

, whose elements of the main diagonal are

product of theRj main diagonal elements. Then, we c
rewrite Eq. ~3! as L5(PnT

† PnT
)1/2nT, and the associate

Lyapunov exponents are

l i5
1

nTtm
(
j 51

nT

ln r ii ~ j !, ~9!

wherer ii ( j ) are diagonal elements of the matrixR( j ).
Now, we introducenP(Bs), which gives how many times

the boxBs is visited by the orbit of the attractor as well a
the number of Jacobian matrices with the same boxBs .
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SinceX5øsBs , nP(X) gives how many times all boxes ar
visited. The probability density functionP(Bs) can be also
estimated asP(Bs)5nP(Bs)/nP(X).

Since there are boxes withnv,d11, we may not esti-
mate all Jacobian matricesDFW ( j ) over the whole attractor
Consequently, the sum in Eq.~9! hasnT<n/Tm elements. On
the other hand,nP(X) is also the number of used Jacobia
matrices, because each boxBs is visited nP(Bs) times. So,
nT5nP(X). Moreover, there arenP(Bs) visited elements in
p21(Bs). Thus, the sum(s51

N (jW j Pp21(Bs)
has nP(X) ele-

ments, and Eq. ~9! can be rewritten as l i

5@1/nP(X)tm#(s51
N (jW j PBs

ln rii(j). When we introduce the

visitation numbernP(Bs) of box Bs , the Lyapunov expo-
nents are given by

l i5(
s51

N

P~Bs!l̄ i , l̄ i~Bs!5
1

nP~Bs!tm
(

jW j PBs

ln r ii ~ j !,

~10!

wherel̄ i(Bs) measures the local divergency of the attrac
inside the boxBs .

In order to estimater ii ( j ) in Eq. ~10!, we need to calcu-
late the Jacobian matricesDFW (Bs). Consider a set$jW j% of
points belonging to the boxBs ,

$zW~ j !%5$jW j2^jW j&:jW jPBs%, ~11!

where ^jW j& is the average position of the points insideBs ,
andzW( j ) is the distance betweenjW j and ^jW j&. After an evo-
lution lagTm , all points into the boxBs from $jW j% to $jW j 1Tm

%

and the point^jW j& evolves to^jW j 1Tm
&. Therefore, the se

$zW( j )% can be mapped into

$zW~ j 1Tm!%5$jW j 1Tm
2^jW j 1Tm

&:jW jPBs%. ~12!

If the hypercube is small enough (l min!l max) the spatial
evolution from$zW( j )% to $zW( j 1Tm)% will be mapped by

zW~ j 1Tm!'DFW ~Bs!zW~ j !. ~13!

We do not take higher-order terms in the Taylor expansion
in the algorithm of Brownet al. @10# because they do no
provide better results. The matrixDFW (Bs) in Eq. ~13! is
estimated using the least squares method@24,25#. If DFW (Bs)
is nondegenerated, Eq.~13! has a solution fornv>d11.
Despite many criteria fornv in the literature@7–10#, the
systematic application of our algorithm reveals that the v
ues ofnv do not affect significantly the performance of th
computer code. As a consequence, we take allnv points into
Bs for estimatingDFW (Bs).

The algorithm for the phase space division is based on
k-d tree algorithm proposed by Friedman, Bently, and Fin
@26#, where the attractor is divided into boxes with differe
sizes@27,28#. The method of Brownet al.searches neighbor
ing points by making use of this algorithm. It is a recursi
algorithm, and the data structure is a binary tree@20#, where
2-3
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N. N. OIWA AND N. FIEDLER-FERRARA PHYSICAL REVIEW E65 036702
each node is associated with one box or one particular re
of the reconstructed phase space. We adapt the algorith
Friedmanet al. to cover the attractor with hypercubes of th
same length and replace their searching procedure byp(jW j )
and p21(Bs) ~see the Appendix!. The root of the tree is a
single hypercube with sizel max52nb covering the whole at-
tractor (nb is the number of bits defining integers of the tim
series!. Starting from the root, every box splits into a pair
boxes of the next generation. When there is free space, b
might move into the reconstructed phase space after e
division minimizing the number of boxes covering the attra
tor. If there are not points in a particular box, the empty b
and the associated branch of the binary tree are elimina
Fig. 1. This algorithm can be used for other analyses wh
an attractor is covered by a set of boxes. For example, in
case of multifractal analysis, it significantly diminishes t
errors@21#. Finally, the boxes of the last generation with si
l min list all pointsj j inside ofBs .

Along general lines, the structure of the algorithm can
summarized as follows:~i! Takens’s reconstruction from th
time series;~ii ! covering of the attractor using moving boxe
~iii ! construction of the index tablesp( j ) and p21(s); ~iv!
estimation of Jacobian matrices through the least squ
method, with subsequent triangularization using the Gra
Schmidt reorthogonalization; and~v! estimation of the
Lyapunov spectrum from Eq.~10!.

III. ADJUSTMENT OF THE PARAMETERS

A first estimate of the adjustable parametersl min , tm ,
andtd is straightforward. The sizel min of the boxes should
be 1% of the lengthL of the attractor@8,9#, defined as the
standard deviation of the mean associated with the sig
$xj%. The timestm and td should be taken of order of th
autocorrelation timetc , the time lag such that the linea
autocorrelation function is half of its maximum value. A
other suitable choice for Takens’ reconstruction time is wh
the autocorrelation function first crosses zero@2,12,29#, in
spite of other more elaborated prescriptions@30–32#. The
embedding dimension for the reconstruction should bed
.2dA , wheredA is the dimension of the attractor. Neverth
less, this dimensiond is not always necessary@2# to provide
an Euclidean space where the set of points can be unfo
without ambiguity. Other criteria, like false nearest neighb
@33#, may be used. Anyway, the largest positive Lyapun
exponent does not change using higher embedding dim
sions, despite the presence of spurious exponents@9,12#.
Concerning the numbern of points in the time series, ther
are some prescriptions in the literature@7–10,34#. However,
we would prefer to apply the simplest of them: the to
sampling time should be such that the non-negative ex
nents of the spectrum at thel i3t graph converge. It is an
important remark that frequently the negative exponents
not exhibit convergence. But, according to the Osede
theorem @13#, the convergence is expected only for no
negative exponents. Moreover, the negative exponent is
ally far from the expected value, reflecting the usual diffic
to estimate numericallyl i along contracting directions.

Nevertheless, Lyapunov exponents usually deman
03670
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more elaborated procedure than taketm5td5tc , and
l min /l max'0.01. If these values are taken, we will have
lusory small errors. On the other hand, when graphs vary
l min , tm , andtd are constructed, plateaus can be identifi
for non-negative exponents. These stable regions are m
pronounced for larger exponents. If the signal is stron
contaminated by noise or other perturbation, these flat
gions disappear, and the estimate of Lyapunov exponen
impossible.

We recommend adjusting the size of the boxl min first.
Our numerical tests show that the bestl min corresponds to
the smallest plateau value in thel i3l min graph. In case such
a stable region does not exist, the most suitablel min is the
one that minimizes the largest Lyapunov exponentl1. Ac-
cording to Albanoet al. @29# and our numerical tests, a sui
able embedding window fortd is the first minimum of the
autocorrelation functiontp . We adopt this prescription fo
thel i3tm graph, too, because we always find the plateau
this interval of time. However, the best choice forl min , tm ,
and td together are the values which maximize these p
teaus. The value and the error forl i are obtained taking the
mean and the standard deviation of the mean of the pla
values.

By way of illustration, take the Lorenz flow@35#

~ ẋ,ẏ,ż!5s~y2x!,2xz1Rx2y,xy2bz, ~14!

with R545.92,s516.0, andb54.0. Parameters of the tim
series areD50.03, n564 000, tc50.09, tp50.30, andL
513468. Figure 2 shows a typical graph set for t
Lyapunov spectrum analysis. Expected values for
Lyapunov exponents according to the literature are rep
sented by dashed lines. We usel min5609, Fig. 2~a!, to ob-
tain Figs. 2~b! and 2~c!. In these figures,tm andtd are varied
around the autocorrelation timetc50.09. Figure 2~b! is ob-
tained usingtd50.09 and Fig. 2~c! makes use oftm50.09.
Plateaus are identified in 0.03<tm<0.15 and 0.06<td
<0.12, indicated in gray in Figs. 2~b! and 2~c!. Average
values and standard deviations of this spectrum are
Table I.

FIG. 2. Lyapunov spectra for the Lorenz flux withR545.92,
s516.0, b54.0, D50.03, n564 000,tc50.09, tp50.30, andL
513 468. The graphs showl i varying ~a! the total sampling timet,
n5tD21; ~b! the box sizel min ; ~c! the evolution timetm ; and~d!
the reconstruction timetd . The dashed lines indicate the expect
values. The arrow in~a! indicates the best box size,l min5609, used
to estimatel i in ~b! and~c!. Dotted lines show the expected value
The gray rectangles indicate the flat regions of spectra where va
were used to estimate thel i in Table I.
2-4
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TABLE I. Lyapunov exponents spectra using methods of Wolfet al. ~WSSV!, Sano-Sawada~SS!, Eckmannet al. ~ERKC!, Brown et al.
~BBA!, and moving boxes.

Expected value WSSV SS ERKC BBA Moving boxes

xj 115122xj
2 ln 250.6931 . . . a 0.9960.01 0.691960.0016 0.68960.007 0.69460.008 0.69860.005

Hénon 0.418560.0005 0.57960.004 0.40460.009 0.41860.006 0.42060.002 0.42060.002
a51.4,b50.3 21.622560.0005b 21.5760.02 21.4860.04 21.6160.02 21.6360.08
Lorenz 1.3760.01 2.2560.12 1.3260.05 1.5060.08 1.4560.04 1.4760.09
R540.00,s516.0 20.01160.005 20.0260.07 0.0060.13 0.0060.05 20.1160.05
b54,D50.03 222.35960.006b 213.963.7 217.367.1 214.669.8 214.762.7
Lorenz 1.50760.003 2.060.1 1.4260.06 1.6660.08 1.5360.02 1.6060.09
R545.92,s516.0 20.00160.001 20.0160.12 0.0160.18 0.0160.03 20.0460.09
b54,D50.03 222.49960.002b 214.764.5 219.966.3 219.168.4 214.662.5
Rössler 0.064160.0009 0.10360.007 0.06760.004 0.06760.002 0.06960.004 0.06960.005
a5b50.2,c55.7, 20.000360.0004 0.00560.006 0.00160.005 0.00360.004 0.00160.008
D50.12 24.98260.003b 21.0960.44 21.260.8 22.3660.04 21.960.9
Mackey-Glass 0.007460.0007 0.01260.002 0.00960.002 0.005460.0007 0.00660.002 0.00960.001
a50.2,b50.1, 0.003860.0007 0.002560.0010 0.001960.0012 0.00160.002 0.003860.0008
c510,T530, 20.001560.0008 20.00360.001 20.001160.0014 20.00460.002 20.00460.001
D50.3 20.01760.003 20.01460.002 20.02060.004 20.01760.003 20.01660.003

20.04860.001c 20.04960.007 20.03960.008 20.04260.004 20.04460.008

aExact value.
bSemianalytical method@22#.
cReference@8#.
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IV. RESULTS IN MAPS, FLUX, AND
EXPERIMENTAL DATA

We compare our method with some well-known alg
rithms @7–10# and use the following maps and flows:~i!
quadratic map@36#, xj 115122xj

2 , with n51024 and 14
bits of numerical precision;~ii ! Hénon map@37# (xj 1151
2axj

21yj ,yj 115bxj ) with a51.4, b50.3, n510 000, and
12 bits; ~iii ! Lorenz flux @35#, Eq. ~14!, using R545.92 or
R540.00, s516.0, b54.0, n564 000, D50.03, and 14
bits; ~iv! Rössler flux @38# @ ẋ52y2z,ẏ5x1ay,ż5b
1z(x2c)# taking a5b50.2, c55.7, n540000, D50.12,
and 14 bits; and~v! Mackey-Glass flux@39#, ẋ5„ax(t
1s)/$11@x(t1s)#c%…2bx(t), with a50.2, b50.1, c
510.0, s530, n564 000,D50.3, and 16 bits. Differentia
equations have been integrated using the fourth order Ru
Kutta’s method@25#. One particular variable has been take
and the attractor has been reconstructed using Takens’
delay reconstruction method. For time-average methods
also consider other parameters not present in our algorit
like the numbernT of Jacobian matrices@40#.

Results with our method in Table I agree with those o
tained using the algorithms of Sano-Sawada@8# and Eck-
mannet al. @9#. However, its performance is slightly inferio
to the method of Brownet al. @10#. The algorithm of Wolf
et al. @7# has many limitations for an efficient estimate of t
largest Lyapunov exponent.

We also evaluate the sensitivity of our algorithm conce
ing characteristics of the time series: the number of point
the data set, the level of noise, the numerical precision
the sampling frequency. Figure 3 shows results obtai
varyingtm andtd and averaging over the plateaus values
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the Lorenz flux with R545.92, s516.0, b54.0, n
564 000,D50.03, and 14 bits has been used simulating
experimental data.

Figures 3~a!–3~c! give values forl i while the total sam-
pling time t is varied. When we vary parameters in search
plateaus, our algorithm converges slowly. We need for
Lorenz flow a number of points of the order of 10 000 for t
convergence ofl1 andl2. This value should be confronte
with those obtained by Karantonis and Pagitsas@12#, who
compared performances of algorithms of Sano-Sawada
Eckmannet al. using the Lorenz flux and keeping all param
eters constant, except the number of data points. Their re
indicate a minimum of the order of 10 000 points for bo
methods using fixed parameters. Besides, when average
the flat regions of the spectrum is used, the quickness and
noise robustness of our algorithm pay for the slow conv
gence as we will show along this section.

Effects of noise can be seen in Figs. 3~d! and 3~f!. We call
noise pseudorandom numbers@24# introduced during the nu-
merical integration of the flow. We define the level of noi
as the ratio of the standard deviation of the mean of noise
the typical length of the attractorL. The largest Lyapunov
exponent using our algorithm is very robust, supporting u
10% of noise. In spite of the large error, the seco
Lyapunov exponentl2 becomes more negative as the lev
of noise is increased. The same type of behavior has b
observed applying the algorithm of Brownet al. to the Lo-
renz flow with noise@2#. In a previous work@40#, we com-
pared some traditional time-average algorithms and c
cluded the method of Eckmannet al. is the most noise
robust, followed by the algorithm of Brownet al. and Sano-
Sawada. While the algorithm of Eckmannet al. supports up
2-5
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N. N. OIWA AND N. FIEDLER-FERRARA PHYSICAL REVIEW E65 036702
to 5% of noise, the method of Sano and Sawada gives
results for signals with more than 1% of noise.

The numerical precision of the data is varied in Fig
3~g!–3~i!. Our algorithm needs data with at least 10 bits
precision, a similar performance compared with the meth
of Eckmannet al. and superior to the algorithms of Brow
et al. and Sano-Sawada, which need 12 bits@40,42#.

We also analyze the effects of the sampling freque
D21. As can be seen in Figs. 3~j!–3~l!, 0.03<D<0.06 is the
best range for the estimates, which is consistent with an
equate sampling of the signal.

We choose the method of Sano-Sawada to compare
performance of the proposed algorithm because both m

FIG. 3. l i varying the total sampling timet ~a!–~c!, the level of
noise ~d!–~f!, the numerical precision~g!–~i!, and the sampling
frequency~j!–~l! for the Lorenz flux withR545.92, s516.0, b
54.0, D50.03, and 14 bits.l i were estimated taking averages
the gray area in Fig. 2. Dashed lines show the expected values
number of points in the time series isn5tD21.
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ods use the Gram-Schmidt procedure as the triangulariza
process, and both estimate the Jacobian through the
squares method. Although Sano and Sawada do not sug
any algorithm to search neighbor points, we have imp
mented the quicksort algorithm@24# as in the work of Eck-
mannet al. @9#. According to our experience@40#, the meth-
ods of Eckmannet al., Bryant et al. and Wolf et al. need
about two, three, and five times more than the CPU time
Sano-Sawada, respectively. We run the computer codes,
ten in language C, into workstations SUN SPARCstation
As can be seen in Fig. 4, our method is between 10 and
times faster than the algorithm of Sano-Sawada, depen
on the number of points, with a much less pronounced rat
growing. Finally, we also tested the method in a notebo
Compaq Presario 1200-XL111, and our algorithm takes o
1.45 sec to estimatel i .

The good performance of the proposed algorithm can
understood. In effect, we have implemented many routi
optimizing the data processing. Our procedure does not n
search routines, since we use indexesp and p21 to find
neighborhoods. Furthermore, we approach all Jacobian
trices associated with a boxBs by a unique average Jacobia
matrix, Eq.~5!, thus reducing the number of estimated Jac
bian matrices. This economy can be exemplified when
method is applied to the Lorenz flux withR545.92, s
516.0, b54.0, D50.03, n564 000, and an evolution lag
Tm53. SincenT'n/Tm , the method of Eckmannet al. uses
21 123 Jacobian matrices. On the other hand, our algori
computes exponents from 21 213 points covering 949 bo
and using 804 Jacobian matrices. The number of boxe
bigger than the number of Jacobian matrices becauseDFW is
estimated only from those matrices which do not have
generacy, Eq.~13!. The method of Sano-Sawada needs
even smaller number of Jacobian matrices, since it is fixe
1000 before processing. However, the performance of
algorithm is faster than the method of Sano and Saw
because it is more efficient to search neighbor points. W
we compare to the time-average methods, the numbe
lines at the computer code has been also optimized in
algorithm through the dynamic storage allocation, the rec
sive function, and the binary tree.

Finally, we applied the algorithm to experimental da

he

FIG. 4. CPU times for estimating the Lyapunov spectra ass
ated with the Lorenz flux varying the number of pointsn. The used
parameters aretd5tm50.09, d53, andnv>3, as well ass, the
proposed algorithm andh, the Sano-Sawada’s method.
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FIG. 5. Set of four analyzed signals:n
515 000, t53.00 ms,tc55.00ms for DZ1045;
n512 000, t53.75 ms, tc55.25 ms for
JA1001; n511 600, t52.90 ms, tc56.50 ms
for JA1052; and n512 000, t53.00 ms, tc

50.50 ms for DZ1049. The signals have bee
sampling at frequency 4 MHz,D50.25 ms.
Each signal is proportional to density broadba
fluctuations at the edge of the tokamak TBR-
The length of the signal is represented by ar
trary units.
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from TBR-1. TBR-1 is a small circular cross-section tok
mak with a minor radius of 0.11 m and a major radius of 0
m, operating with Ohmically-heated plasma with the fo
lowing typical parameters: toroidal magnetic fieldB
54 – 4.5 kG, plasma current 4210 kA, electron density
(2 –10)31012 cm23, and electron temperature on axis 1
eV. The data consist of local fluctuating signals of the i
saturation current in the triple Langmuir probes placed in
scape-off layer of the tokamak TBR-1@41#. The signals are
proportional to density broadband fluctuations at the edg
the plasma. The associated frequency spectra are wide,
ering the range 10–500 kHz. The set of four signals we h
analyzed in Fig. 5 represents typical data chosen among
experimental results available.

We have estimated for the largest Lyapunov expone
associated with three of the four signals using our algorit
as well as the methods of Sano-Sawada, Eckmannet al., and
Brown et al. The Lyapunov exponent analysis for the sign
DZ1049 is not conclusive due to the presence of strong
natures of noise@40,42#, corroborated by the nonsaturatio
of the correlation dimension using the algorithm of Gra
berger and Procaccia@43#.

Figure 6 shows the values for the largest Lyapunov ex
nents using our method and varying the embedding dim
sion around the correlation dimension. Eachl i was calcu-
lated considering variations oftm and td , as explained in
Sec. III. The values indicated in Table II have been obtain
taking the mean and the error of the values inside the g
area in Fig. 6.

There is a significant spread in the values for the larg
Lyapunov exponents obtained for each signal using differ
algorithms. The smallestl1 we obtain using the propose

FIG. 6. Lyapunov spectral i in 106 s21 using our method for
signals DZ1045, JA1001, and JA1052 as a function of the emb
ding dimensiond. The values used to estimate the largest Lyapun
exponents are in gray.
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algorithm is consistent with its noise robustness. Since no
usually increases the largest Lyapunov exponent, values
ing other methods should be overestimated.

V. CONCLUSIONS

We have proposed and tested an algorithm for estima
the Lyapunov exponents from time series. Compared to
traditional time-average methods, the proposed algorithm
faster, more noise robust and uses a smaller number of
rameters, simplifying substantially its utilization and givin
results comparable to those obtained using the best a
rithms. In order to optimize the phase space division in
boxes, we constructed a recursive algorithm, where bo
move adapting to the geometry of the attractor. This pro
dure permits a better and more efficient estimate of the pr
ability density function and the Jacobian matrices inside e
box. We also tested estimating Lyapunov exponents fr
experimental signals of density broadband fluctuations at
edge of the plasma of the tokamak TBR-1, with conclus
results for the largest exponent.
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APPENDIX: THE ALGORITHM OF MOVING BOXES

The binary tree in our algorithm is built using a recursi
procedure we call axes_divide. The input variables are a

TABLE II. The largest Lyapunov exponentl1 in 106 s21 for
signals DZ1045, JA1001, and JA1052. The exponents were
tained using the algorithms of Sano-Sawada~SS!, Eckmannet al.
~ERKC!, Brown et al. ~BBA!, and moving boxes.

Method DZ1045 JA1001 JA1052

SS 0.1960.05 0.1960.05 0.1160.02
ERKC 0.2060.05 0.1860.04 0.0760.03
BBA 0.1560.04 0.2160.06 0.1660.03
Moving boxes 0.1060.03 0.1160.04 0.1060.03
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N. N. OIWA AND N. FIEDLER-FERRARA PHYSICAL REVIEW E65 036702
ciated with the nodes of the binary tree, and these varia
control the recursive nature of axes_divide. The descrip
of this variable is given by$jW j%, which represents the whol
reconstructed attractor or a part of it; the vectorpW , pW PZd

represents the center of the box;aW andbW are the inferior and
superior limits of the reconstructed phase space~at the root!
or a subset~at thenth generation! of it, respectively, and they
are always redefined along the recursive application
axes_divide. Furthermore, there are the variables contro
the depth of the binary tree: the scalarl PZ, which gives the
side of the box, andi, 0< i<d, a variable that indicates th
beginning of the attractor division (i 50) or the axis which
will be divided (iÞ0). We needd generation to divide a
hypercube in 2d boxes, and the tree will have (k11)d gen-
erations from the root to terminal nodes.

The root of the binary tree is one hypercube with s
l max52nb centered at the middle of the attractor,pW 5uW 1(vW

2uW )/2, whereuW 5min$jW j% andvW 5max$jW j%. We compute alluW

andvW by scanning$jW j% and taking the minimal and maxima
values in the most simple way. The limits of the phase sp
aW andbW , are simply the numerical precision of the comput
or else these limits are those values sufficient to cover
whole attractor. We takei 50 to indicate the beginning of th
hypercube division. The input variables of axes_divid
which are associated with the root of the tree, are$jW j%, pW , aW ,
bW , l max, and i.

The recursive function axes_divide can be described
follows:

~a! If $jW%5B or l 5l min , nothing will happen, and the
procedure axes_divide will return to the calling routine
caller. The conditional expression$jW%5B is a test for the
branch elimination. All empty boxes are eliminated usi
this test. Furthermore, this item has a second function: w
the terminal node is the root, we do not need to build
tree, and this situation is identified through the testl
5l min .

~b! If i 5d and l Þl min , take i 50 and call axes_divide
making use of$jW j%, pW , aW , bW , l /2 and i as input variables.
After this, the procedure is finished. When the division of t
box with sidel along itsd Cartesian axes is finished, w
will check in this item, if the box is divided again in 2d parts
or not using the conditional expression (i 5d)`(l Þl min).

~c! Incrementi, i 5 i 11, identifying the axis which will
be divided.

~d! Divide the hypercube into two boxes with the sam
size using a bisector plane in thei axis. Then, we have

$jW j%L5$jW j :j i j 5xj 1( i 21)Td
<pi%,

$jW j%R5$jW j :j i j 5xj 1( i 21)Td
.pi%, ~A1!

wherej i j andpi are, respectively, the componentsi of vec-
torsjW j andpW . These equations define the left and right nod
of the binary tree. If$jW j%L or $jW j%R is empty, the branch o
the empty set will be eliminated using item~a!.
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~i! If l 5l min , i 5d and $jW j%LÞB or $jW j%RÞB, $jW j%L

and $jW j%R will be joined in a list with terminal nodes of the
binary tree, and the function goes back to the caller. This
of terminal nodes is given byp21(Bs). Each element of
p21(Bs) is a terminal node and also a table with the po
tions of each element of the sets$jW j%L and $jW j%R , p21(Bs)
5$jW j%L andp21(Bs11)5$jW j%R . On the other hand, the ele
ments of$jW j%L and $jW j%R will point the box Bs through the
index p(jW j ): p(jW j )5Bs with jW jP$jW j%L and p(jW j )5Bs11,
wherejW jP$jW j%R . Finally, if $jW j%L and$jW j%R are not terminal
nodes, the input variables of axes_divide for each node
branch will be defined as follows at~ii ! and~iii !, and we will
split each set$jW j%L and$jW j%R again calling axes_divide.

~ii ! Define the left branch. This branch is associated w
the left box. The obvious choice for the center of the left b
piL along the axisi is the first quarter of the main box, i.e
piL5pi2l /4, since a box centered here always covers
left side of the attractor. However, sometimes there is f
space in the phase space. The free space is verified takin
following distances:

di5pi2v iL , dii 5v iL2ai2l /2, ~A2!

wherev iL is the maximum value of the left side of the a
tractor along axisi. When di is smaller thandii , we can
movepiL to v iL2l /4 dispersing the left box. Now the cente
of the left box is

piL5H v iL2l /4, di<dii ,

pi2l /4, di.dii .
~A3!

The main advantage of this movement is the eventual eli
nation of extra boxes in posterior applications of the pro
dure axes_divide, since the left side of the left box might
empty. When the left branch is created, the phase spac
also divided in two, so the new limit of the left side of th
phase space is

aW L5aW , bW L5H bk , kÞ i

pk , k5 i .
~A4!

After that, we call axes_divide using$jW j%L , pW L , aW L , bW L , l ,
and i as input variables.

~iii ! The procedure for the right branch is the same as
left. So,

diii 5uiR2pi21, div5bi2uiR2l /2, ~A5!

piR5H uiR1l /421, diii <div

pi1l /4, diii .div,
~A6!

bW R5bW , aW R5H ak , kÞ i

pk11, k5 i ,
~A7!

where uiR is the minimum value of the right side of th
attractor along axisi. We call axes_divide again using$jW j%R ,
pW R , aW R , bW R , l , andi as input variables. The term21 atpiR
2-8
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FIG. 7. ~a! A two-dimensional
attractor covered by a single box
Dashed lines indicate the squa
division in the box with sizel /2.
~b! The movement of the box
along they axis. ~c! The elimina-
tion of the unnecessary box.
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in Eqs. ~A5! and ~A6!, as well as11 at aW R in Eq. ~A7! is
related with the representation of variables as integer n
bers.

axes_divide also performs a second movement in the
pendicular semiplane of the Cartesian axis, see Fig. 7. W
the attractor is divided atpi along the axisi, sometimes the
best choice for the division of the next axis is not atpi 11. So,
we might reduce a bit more the number of boxesN using the
following procedure.

~a! If the lengths of the subsets$jW j%L and$jW j%R are larger
than l /2 in the axisk, i ,k<d, i.e., if the length of the
subsets is too large for the second movement, nothing
happen and the procedure will be finished.

~b! In casebk2vk<l /2, we will definepk5vk2l /2. In
another casepk5uk1l /221. We check through the cond
tional expressionbk2vk<l /2 if there is free space for th
box movement at the top of the attractor. In the affirmat
a

m-

,

D

rto
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case, the box is moved to this direction. On the other ha
the box moves to the bottom of the attractor. Using t
movement an empty side opens into the box. This empty s
will be eliminated with the future application of axes_divid

There is one last problem with the sidesl of the boxes,
which are always given by 2k, k<nb . axes_divide always
splits boxes into two parts with the same length, andl must
have the same computer representation of the phase s
So, l is an integer 2k because the division ofl must result
in another integer. On the other hand, Lyapunov expone
are very sensitive to the definition of neighborhood@40,42#,
limiting the proposed algorithm, since we need boxes w
sizes different from 2k. We avoid the problem by changin
proportionally the data instead of the box size. So, we ren
malize the time series by writing $xj%new
5$xj /2

log2 l min[mod1]%. Now, the new l min values
2integer(log2 l min) for axes_divide.
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@37# M. Hénon, Commun. Math. Phys.50, 69 ~1976!.
@38# D.E. Rossler, Phys. Lett.57A, 397 ~1976!.
@39# M.C. Mackey and L. Glass, Science197, 287 ~1977!.
@40# N.N. Oiwa, Master dissertation, Universidade de Sa˜o Paulo,

1994.
@41# W.P. de Sa´, Master’s dissertation, Universidade de Sa˜o Paulo,

1987; D.F. da Cruz, Master’s dissertation, Universidade de˜o
Paulo, 1987.

@42# N.N. Oiwa and N. Fiedler-Ferrara~unpublished!.
@43# C.P.C. Prado and N. Fiedler-Ferrara, Plasma Phys. Contro

Fusion33, 493 ~1990!.
2-10


